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Capon's maximum likelihood (ML) method has been used with some success in matched field
processing for source range and depth estimation. One reason for the interest in the ML is that
it is data adaptive; that is, it adapts to the actual noise field present rather than requiring an
a priori estimate of the noise component for prewhitening. When modal noise is present the
ML can become sensitive to any deviations from the unperturbed case (i.e., from the model) as
would be introduced by phase errors or model parameter errors. Using a dimensionality-
reduction procedure a more stable data adaptive method, the "reduced" ML (RML), is
obtained. The RML is compared here with the ML on simulated data from a 21-sensor array
in a Pekeris waveguide supporting eight normal modes. Under modal noise conditions the
RML provides a significant improvement over ML when phase errors occur. Although the
deviation from the model conside--d here is that caused by phase errors, the nature of the
perturbation is not important si he sensitivity of ML is not to any special type of
perturbation.

PACS numbers: 43.30.Wi, 43.30.Bp, 43.60.Gk

INTRODUCTION of normal mode propagation in a waveguide we obtain the
"reduced" ML (RML).

A number of recent articles have considered the topic of To understand why the ML is unstable in the cases con-
matched field processing, in which the plane wave steering sidered we examine the eigenvector/eigenvalue decomposi-
vector used in bearing estimation is replaced by a more com- tion of the cross spectral matrix obtained from the data and
plicated vector that models what appears at the array when expand the ML estimator as the reciprocal of a sum of terms,
there is a source at a particular range and depth in a wave- one for each eigenvector. Most of the terms in the denomina-
guide. Most published work to date deals with a range- tor of the ML estimator will be zero at the correct range and
independent propagation model and employs a normal depth, leading to a large peak in the ML estimator. When
mode representation of the pressure field. When a conven- there are no phase errors, several terms in the sum vanish
tional matched filter approach to range-depth estimation is identically across the ambiguity surface. When phase errors
taken, the resulting ambiguity surface often contains several are present these terms are slightly bigger than zero every-
false peaks. To obtain smoother surfaces one can use various where and the value of the denominator at the true range and
".mode space" beamforming methods 4"; recently, the use of depth increases, leading to a drop in peak height. By remov-
Capon's maximum likelihood (ML) method "'7 has also been ing the offending small, but positive, terms one can restore
considered. the peak and stabilize the ML estimator; when so modified

It has been shown for the plane waves case' that Capon's the estimator becomes the RML. It is not necessary to calcu-
ML can become quite sensitive to deviations from the unper- late each eigenvector and each term separately; a dimension-
turbed model case in the presence of a correlated noise field, ality-reduction procedure accomplishes this and avoids the
such as spherical isotropic noise with an oversampled array. inversion of the full-sized matrix as well.
For the more complicated case of normal mode propagation The paper is organized as follows: Sec. I formulates the
in a ,aveguidc, the ML again exhibits sensitivity to pertur- problem in mathematical language, presenting the normal
bations in the data, particularly in the presence of modal mode model for the vector of pressure field samples, intro-
noise. "Sector-focused stability" (SFS) was introduced in ducing the theoretical cross spectral matrix to be used
Ref. 8 to stabilize the ML in the plane wave case. The SFS throughout, and touching briefly on two linear estimators,
involves tle use of a square matrix whose size can be consid- the conventional matched filter method (CONV) and the
erably less than the number of sensors, and therefore reduces mode space version of the conventional estimator, called
computation cost and numerical errors while improving sta- here the modified conventional method (MCONV). In Sec.
bility. When the philosophy behind SFS is applied to the case I I we present Capon's ML method, discuss proper normali-
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zation procedures, introduce the eigenvector/eigenvalue de- Eq. ( 1 ) applies. We consider these two approaches to the
composition. and consider the source of the instability. In range-dependent case in Appendices A and B.
Sec. III we develop the RML and present alternate methods For x given by Eq. ( 1 ), the cross-spectral matrix
for its calculation. Section IV contains a discusion of our (CSM) is R = (xx"), with H denoting conjugate transposi-
simulations and results. Section V contains comments and tion and ( ) time averaging; R is the average, over the avail-
conclusions. We include three appendices. The first extends able snapshots, of the dyad matrices xx", and is given (ap-
our discussion of the sensitivity problem to local normal proximately) by
mode modek for the range-dependent case, and the second is R = var(a,,) Us,,s,'u" + UQU" + p21, (4)
concerned with similar sensitivity in the use of the parabolic
approximation. The third appendix contains a mathematical where Q is the CSM associated with the modal noise field
derivation relevant to the normalization of the ML estima- (i.e., Q = (yy")) and p 2 is the white noise power. The ma-
tor. trix Q may or may not be a diagonal matrix. This depends on

the geometric distribution of random sources comprising the
I. FORMULATION AND BACKGROUND ambient noise field, and does not follow solely from the inde-

We consider a vertical array of N sensors in an acoustic pendence of each of these random sources?' 4 The matrix Q
is diagonal in the Kuperman-Ingenito development (Ref.waveuid suporing < Ndisret proagaingmods. I0, p. 1991) because of the assumption made in their work

We shall be concerned here with the case studied by Buck-

ingham," the so-called 'low-loss" situation, in which the that the spatial coherence of the noise depends only on sepa-

main contribution to the ambient noise field is discrete mod- ration. The matrix UQU" plays the same role as K, in Bag-

al propagation over long distances of acoustic energy due to geroer et al.

independent, randomly distributed, surface sources (see We shall adopt the following model for the CSM R:

also Kuperman and Ingenitol'). For the case we consider R = / 2 Us,,s7U" ± +
2 UU11 _p

2
1 . (5)

here the single-snapshot, narrow-band, data vector x (N by This represents a single source s,, a correlated (modal) noise
I ) has the algebraic form component UQU "(Q = oD1), and a white noise component

x = a,,Us + Uy + rI. (I) p 21. More general models, which include a second (interfer-

Here, U is the N by M matrix whose (n,m)th entry is ing) source, have also been considered,2 but Eq. (5) will be

U,... = U,,, (z,,), which is the evaluation, at the depth z,, of sufficient for our purposes. It is a relatively high level of the

the nth sensor, of the mth mode amplitude function (see o,2 UU"term that will beofimportance here. That Qbe diag-
Kuperman and Ingenito,"' p. 1990). The entries of s and onal is not crucial to our analysis; only that Q have full rank

(random vector) y represent the excitation of the various M.

mode amplitude functions by the signal and the aggregate The first step in any matched-field approach to estimat-

noise sources, respectively. Also, a, is a complex Gaussian ing so is to construct, for each potential source vector
random amplitude and -q is a random white (nonmodal) s = s(r,z) (where r and z are range and depth), the vector

n1oise vcctor. p(r,z) = Us(r,z) that the array would have received. This

For the case of range-independent sound speed and den- can be done through the use of complex computer models of
sity, and assuming cylindrical symmetry, the pressure field the propagation, such as parabolic approximation rou-
at depth z due to a single source at depth z, and range r is tines,"' or by employing the matrix U directly if it can be

given by obtained from a (local) normal-mode model. ' 2 The conven-
tional estimator is essentially the matched filter:

p(r,z,,z) , U,,, (z)s,, (r,z,) (2) CONV(r,z) = p(r,z)"Rp(r,z) , (6)

where the U, (z) are the samples, at the sensor depth z, of and the plot of CONV(rz) over ranges and depths of inter-
that arises as a solution to the est is referred to as the ambiguity surface. A detailed discus-thepth moal eigfuncion bsion of the conventional approach to matched field process-

depth variable Sturm-Liouville boundary value problem,"
and the s,, (r.z, ) are the modal amplitudes given by ing is given in Ref. 2. An alternative method involving, forthe normal-mode case, the passage to "mode space" 4 5 is the

s,,, (rz,) = U,, (z, )exp(ik,,,r) (27r/k,,,r) /2, (3) following modified conventional method:

The matrix U hasentries U,,,,, = U,,, (z,, ), where z ...,z are
the depths of the N sensors and the vector s has the entries MCONV(r,z)

s,,, (r,z). Here, k ,, is the eigenvalue associated with the mth =s(rz) "( U 1U) -U 1RU(U "U) - Is(rz). (7)
mode. The noise vector Uy represents modal noise created
by the excitation of the modal structure by distributed inde- It can be shown that MCONV is the optimal linear processor
pendent sources of ambient acoustic energy, such as wave for minimizing sidelobe structure if the distribution of po-
action on the surface and/or many range-separated surface tential sources resembles a noise component of the form
ships (see Kuperman and Ingenito,"' p. 1990). a2 UU ". Equivalently, MCONV is the optimal linear proce-

When the sound speed or the density is range depen- dure to maximize array gain against noise having the form
dent, one can modify the normal-mode analysis to obtain a a 2 UU".
theory based on local normal-mode structure,' 12 or use a As with the plane wave case, when the noise is not white
parabolic approximation. ' In either case the model given by the CONV method is not optimal and the optimal procedure
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then in,,ol',es a prewvhitening. This prekhitening requires For the situation considered here the noise is primarily
k nos ledge it' the actual noise-on lv cross-spectral iiatrix. niodal so that, in the absence of a signal, the CSM R would
Since 'such kno\ledge is usuall not ai ailable one might pre- have the form R -- UU - El. for some small e > 0. In Ap-
ter to ue a mlethod that adapts to\ whatever tile noise cor|po- pendix C we show that as e goes to 0 the ML ambiguity
nent happens to be, rather than relying on an a pr.ori model surface for this R goes to s(r,z) "s(r.z). We choose therefore
ofthe noise: the \IL method is such a data-adapti'e method. to normalize our NIL surfaces by dividing by s(r,z)"s(r,z),

instead of by p(rz) "p(r,z). This change in normalization is<

II. C4PON'S MAXIMUM LIKELIHOOD METHOD important when there is a sizeable modal noise component.
Figures I and 2 illustrate the ML estimator for R as in (5).

Capon's maximum likelihood (ML) method is a non- normalized by dividing by p(r,z)"p(r,z) and by
linear estimator in that the inverse of R is required and that s(r.z) s(r,z), respectively.
its resolving capability increases with SNR. For moderate
levels of SNR it has better resolution than CONV. It is con- Ill. THE "REDUCED" MAXIMUM LIKELIHOOD METHOD
venient to use because it does not require prior knowledge of (RML)
the ambient noise (it adapts to whatever noise is present)
and can be used with any array geometry. When applied to The "reduced" maximum likelihood estimator (RML)

matched field processing it often presents a less ambiguous agrees with Eq. (9) except that the sum is over the first 1

ambiguity surface than CONV. The derivation of NIL can be terms only:

e:,tended without difficulty from the plane wave case to that RML(rz) - " A ,,zp(r.z), (10)
of more complicated propagation in a waveguide and it is ,

this extended ML that we consider here. We shall compare ML with RML in our simulations and
For R as in Eq. (4) and p(rz) = Us(r.z), Capon's ML observe the extent to which ML degrades when phase errors

method leads to the maximum likelihood estimator are present. To compute RML it is not necessary to obtain

MkL(r.z) = l/[p(r.) "R 'p(rz) . (8) explicitly the eigenvalucs and eigenvectors of R; in fact.

A detailed discussion of this estimator and its application to RML can be obtained from the matrix used in the MCONV.

acoustic waveguide array processing is to be found in Ref. 2. The passage to "s space" that occurs in ca!culating the

Our treatment here is different in that we are concerned with MCONV involves the transformation of R to

the effects of a relatively high level of modal noise. We find it T = (U "U) 'U "R U(U 11U) - 'and the transformation of

helpful to analyze the ML estimator in terms of the eigenvec- the "potential source" (or "steering") vectors p = p(rz) to

tors and eigenvalues of R. The matrix R is Hermitian posi- s = s(r,z) = (U"U) -'T"p(r.z). Applying the usual

tive definite and so has positive elgenvalues "maximum likelihood" approach of Capon, we are led to

) A - " " A ., > 0 and associated orthogonal eigenvec- consider the estimator I/s"T 's, which as we shall show, is

tors z,,....z,, normalized to have norm equal to one. It fol- equivalent to the RML.

lows from the form for R given in Eq. (4) that To show equivalence of the two estimators we begin

, • =p = ' =p2 and that, for n = M + 1.....V, z,, with the eigenvalue-eigenvector decomposition of R

is orthogonal to the columns of U.'5 If we now rewrite the %/
R 7 ', z, z" (IML estimator as ,,,,(

ML(r.z)= A,, 'z,,p(r,z) 2(9)

we see that the terms from n = M1 + I to N are identically
equal to zero for all p(r,z), so they play no role in the ML
estimator and the denominator of ML reduces to a sum over
n = I ...... V1. When phase errors are present the eigenvectors
of R are altered and the terms corresponding to , ". I

n = V 4- 1 ...... V do not vanish identically, causing the ML 8 0.75.

estimator to degrade. If we eliminate these last N - M terms c 050"
we obtain a new estimator, which we call the "reduced" ML 80.25.
(RML). 0,. 0,

In plane wave array processing the steering vectors 1000 it '20

[analogous to our p(r.z) ] have constant norm, so no norma- 2000 " . 20

lization of ML is required. For normal mode (or more gen- 0004 - . , 4

cral models p(rzp(r.z ) is not constant ai for that rea- 50 0 0  ..

son it is common to calculate a normalized MNL. In our case 7000
this iould in cl, multiplying (8) by p(r.z)1'p(r.z) or.
Cqti\ aclntl b,. replacing each p( r.z ) by p( r.z)/ 1:G. i. Arnhiguiy "urface produced using Mi. estimator for Pekeris %%avc-

I p( r. .: 'p P.2) fe cl thal this is not a reasonable pro- guide cn',ironnciii. fhc level of .hite ;ioise i, 10 ti lie .a signal to

hiuto e noisc ratlio of 10 d ll Fe le e ftinto alt iois ."2(1dB I c. a ignitl to
.irc ,ud i lhr ainalvli ar'uimnerit in f'asor of a diff'erent modal ois, ralti of 20 d1) Theic scring vector% art normatihed so ihai

ii ri iall/lt til. p r.z)"p(r,z) t. for all r.z. 03
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From the above calculations we see that RML can be

calculated as

RML(r,z) = [p(r,z)"U( U"RU) 'U"p(rz) (19)
1. The matrix (U"RU) to be inverted can be ill-conditioned

8075 and it is safer to orthogonalize U first. We can use "QR

0 factorization" 5 1
, to write U = VX, where V is an N by M

5 2 matrix with M orthogonal columns of unit length and Xis anL).25 ,
0.25 .upper triangular matrix; this is essentially Gram-Schmidt

50 orthogonalization in matrix language. We then have
0. 75 V"V= 1. and replacing Uwith VXin (19) leads to

RANG 2i) 60000- 000 RML(rz) = [p(r.z)"V( V"RV) 'V"p(r,z)J . (20)
FLANGE 6000w 766)0 The matrix V"R V will be better conditioned than U "RU

FIG 2. Ambiguity 'urface produced using ML estimator for identical en- generally, and so more accurately inverted.
;ironncntal and noise conditions as in Fig. 1. The steering vectors are nor- We see from Eqs. (8) and (9) that the ML estimator
niahzed so that s(r,z) "s(rz) - , for all rz. will show a peak at the true value p = p0 =Uso provided that

the denominator is close to zero for p = p,, and larger for

neighboring values. The information about the signal is then
Sincez,, is orthogonal to the columns ofU forn>M + 1. the carried by the (near) nulls of the functions z,,p(rz) 2, for
z, for n = I ...... 1 must be in the linear span of these same n = 2,...,N. When the denominator is perturbed by the addi-
columns," that is. z,, = Ua,, for some a,, (n ,M). Hence, tion of small but nonzero quantities these (near) nulls are

, f disturbed, with the result being the loss of the peak at the
U "R U = " A,, U"z,, z,'U true signal location. This is what happens when the terms

corresponding to n = M + 1,...,N are no longer identically

= A,,(U "U)a,,a,'(U"U) . (12) zero, due to the presence of phase errors. In our simulations, U) awe compare the performance of the ML and the RML for

Then with W = (U "U) = W" we have varying amounts of phase error. Before we pass to the simu-
lations it will be instructive to examine the behavior of the

Vf
W U"RUW = ,, Wa,,a,'/W". (13) ML estimator in one special case, in which U"U - 1.

With U"U= I we have , = a- +o2 +p

Since (Wa,, )(Wa)= a ,'W"Wa = a,' ,'U"Ua = Z,,z it 2 .... = A, =o 2 +p 2, where the signal power is
follows that { Wa,,. : I ...... } is an orthogonal set, in a 2 =/3 2soiso. We can then write the ML estimator as
which case

(W 'U"RUW-") = W(U"RU)'W ML= A1  , t 'p+('+P' Z,p

.14

11 ,'a,, all W . (14) 2 z.',I 2'\ (+, ,_ xil (21)
By eliminating the W from the left and the right one obtains " M I

f A,(5 As the a 2 gets larger the value of Ai gets smaller, so the
U"R,,,,a,,. (15) first term in the denominator gets smaller, making the

SS =/(near) nulls of the remaining terms more significant and the
Sintc s = s( r,z) = ' U"U) - U "p(r,z) we have, peak of the ML estimator more visible. For smaller values of
s(r.z)"T Is(r,z) p(r,z)"U(U"RU) U"p(r,z) . 2, however, the first term contributes a sizable nonzero

(16) quantity to the denominator, causing the (near) nulls of the
remaining terms to become less significant and the peak in

Using Eq. (15) in Eq. (16) we have the ML estimator to drop; this is the reason for the depend-

f ience of resolution on SNR.
s(r.z)T s(rz) ,, ' p(r,z)"Ua,,alU p(r,z) Holding a andp fixed, let us consider the effects of rais-

ing o. As or is changed, the eigenvectors z., n = l ... M
34 , change, while those for n = M + 1,....N do not. If o2 is small

A,, 'jzp(r,z)j . (17) compared to a 2 ±p 2 , for n=2_.,M, the values of

Hence. jz 'p(rz) 12 will be nearly zero for (rz) corresponding to the
true source parameters, but as or increases, these (near) nulls

RML [s"(r,z) T 's(rz)J , (18) will weaken and become less distinguished from neighboring

and the RML estimator has precisely the same form as the values. In addition, ascrincreases,A , 1 (a2 + o2 +p 2 )

MLestimator (8). We note that in order to calculate RML becomes more like A2 1 = I .... I (a' +P 2  , in-
we need only invert the single matrix U "R U (16), which is creasing the (unwanted) contribution from the first term in
M by M. the denominator of Eq. (21). The overall effect is to make

2496 J Acoust. Soc. Am., Vol. 87, No. 6, June 1990 Byrne et a.: Data-adaptive matched-field processing 2496



the ( near) null in the signal direction more shallow, to raise lar way, by adding a constant (T2 to the diagonal elements of
the background noise level and to increase sensiti\ ity to the the modal space cross-spectral matrix 1. The value of c7 is
presence of the third term in the denominator of Eq. (21). determined by scaling the diagonal elements of oUU"

against the mean power detected on the hydrophones. In

IV. RESULTS these simulations the acoustic source level is held steady so
that the field detected at the hydrophone array due to the

In this section we inestwiate, by means of conputa-
t l isource remains constant. The values ofp2 and o2 are then

ens ironnent, the behai |or of both MIL and R NIL estimators adjusted to achieve the desired levels of white noise and mod-
ts tile\ respond it) %.arvin.g aloutls of phase error applied il noise, respectively. We will quantify the values ofp' and o&

tn t in terms of their dB level above ( + ) or below ( - ) the
cadou t t i e n i nta o el the h r e array the signal level. Note that this method of quantifying the noise

lacHC quihalfspace model f her is E e togh levels (which is convenient and helpful here) is the opposite
1iedf that usually adopted. Thus, t modal noise level of - 10
the simplicit, of the Pekeris model limits its general applica- dB would correspond to a signal to modal noise ratio of
bilif,, it does possess features that are very sim ilar to at least dB The sme alies to relatio of

-n ,al\wtrevrneti hc ace-il e -+ 10 dB. The sanme applies to the relationship between the
onelevel of white noise and the signal to white noise ratio.
periments have been performed. In this case, the water lelofwienseadteigltohteoseri.perient hi\ c eenperormd. "Ilithi cas, te wter Ini order to provide a means of quantifying the rough-
sound-speed profile was almost isospeed. and a thick sandy
sediment layer w~as present. %vhich carried no shear waves ness of the ambiguity surfaces, and a measure of peak resolu-

and therefore behased like a liquid. The Pekeris model is also tion, the peak value (P). mean background level (p ). and

Sused *d well-understood stadrd model. It standard deviation of the background ( ) are calculated for
a xsid~ an nareach surface. The mean background level is calculated by

should describe most of the acoustic characteristics of gen-

eral shallo\w-\ater aveguides. Since the acoustic wavefunc- excludinga small interval around the peak. Two measures of

tions \kithin the waseguide are calculated analytically. with- peak-to-backgroufnd resolution are used." 2" These are
PBRI = (P - p )/p and PBR2 = (P - p )/. We do not in-out eedfor ecorseto nmercaltechniques, theout eedforrecurseto umeica tecniqesthe fer statistical behavior from these quantities, but merely use

calculation of the pressure field vectors p, the transforma- fe sitica or fromdtes e uaittes. y

t on matrices (Land the modal amplitude vectors s is greatly them as indicators of "goodness" of the surfaces.facilitated. This makes the transformation from R to T". and Phase errors ar2 introduced i'to the system in the fol-
therefore the calculation of the RML estimator (18). a rela- lowing manner. First the maximum phase error is specified,
t hee Ifortiple caatin osay 6 de'rees. (We refer to this number simply as the "ran-

clN simple matter. dom phase error" or RPE.) Then a diagonal matrix D is
The Pekeris model consists of a shallow isospeed water

layer of tniform density overlying a faster, isospeed, semi-
infinite fluid bottom of' uniform (and usually higher) den- D = diag [exp(i b,, n= 1_.....AN, (22)
sitN. For a full description of the general Pekeris model, the
reader is refe.rred to a standard text (e.g.. Ref. 17). In this where the (b,, are independent random variibles uniformly
wyork the wkater depth is 100 im. the sound speed in the water distributed between - 0 and + 0. Then the CSM R is re-
and sediment is 1500 and 1621.6 m/s. respectively, and the placed by R = DRD"
sCdiment/water density ratio is 1.772. The acoustic source Before we begin to investigate the stability of the ML
has a frequency of 150 Hz, which leads to the establishment and RML estimators to phase error, we will reconsider brief-
of eight propagating modes in this waveguide. The source ly the question of estimator normalization first raised in Sec.
X, as placed at a range of 4000 m from the array at a depth of II. The importance of this question may be illustrated very
1) m. A ertical hydrophone array consisting of 21 evenly clearly if we consider a case where white noise is introduced
spaced lydrophones is placed to sample the central 50 m of at a low level compared with the signal (p2 

= - 30 dB).
the wN alcr column. while the level of modal noise is considerably higher than the

Thc differencc in order of the modal and hydrophone signal (o2 = 20 dB). No phase errors are yet introduced. In
spac er,,ss-spcctral matrices here does tiot lead to an un- Fig. I we see the ambiguity surface obtained by using the
duc c 'iiputatit ial problems in transforming from one pro- summation expression (Q) for the ML estimator with these
ce""C -,pac tOw otlhcher. Sincc the array spans only 50ff, of inputs. In this example the steering vectors p(r,z) are nor-
the 5atcr colunmn the matris U"C- , and its cigenvalues malized to have unity norm [i.e., p(r,z)"p(r,z) = 1, for all
will i\ picil\ not hase the distrihution described by (21). r,z]. Figure 1 indicates that, for the noise level inputs de-
I l \cx es er an oftihe broad features of the cigenvaluc dis- tailed above, this normalization procedure applied to the
tihution %%ill he similar to (21 ). w\hich may frequently serve ML estimator results in a highly erratic ambiguity surface. A

asita hasis fo~r interpreting the phenomena observed when the ridge can be secn close to the input source position ( 10-m
mtise les els are varied, depth and 4000-m range), but it is masked by numerous

White noise is introduced into the system by adding an sidelobes. Several of these have greater intensity than the

appropriate constant I i.e., p' in Eq. (5)1 to every diagonal signal peak. Clearly, reliable and unambiguous estimation is
element of the cross-spectral matrix in hydrophone space R. not possible on this surface.
The % alue of p. is determined by scaling against the mean Rather than normalizing the p(r,z) to have unity norm,
power detected on the hydrophones (equivalent to the mean we normalize so that their corresponding modal vectors
diagonal element ofR). Modal noise is introduced in a simi- s(r,z) have unity norm [i.e., s(r,z)"s(r,z) = 1, for all r,z].
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With this choice of normalization the MI. estimator would noise is introduced at a low level compared to the signal
gise a flat anibiguity surface, in the noise-only case, if the (p' = - 30 dB), while modal noise is considerably higher
CSNI is R -'CI ". If we again use the summation expression but still lower than the signal (cr2 = -- 10 dB). In Fig. 3 we
(Q) to recalculate the ML ambiguity function for tile see the ambiguity surface obtained using the ML estimator
p -- 30 dLB. (T - 2t0 dB case discussed in tile previous (9) for these input noise levels with zero RPEon the hydro-
paragraph, we obtain the surface in Fig. 2. It must be stressed phones. iissurfacecontainsan unambiguous primary peak
here that Figs. I and 2 have been calculated using an identi- at thc true source location ( 10-m depth and 4000-m range).
cal algorithm [i.e., Eq. (Q) I with identical inputs. The only The peak is extremely well resolved against all the sidelobes
difference between them is the way the steering vectors present which are minimal in intensity. As mentioned ear-
ptr.z) have been normalized. In fact, since the vector s(r,z) lier, the terms for n..M 1 in thesummation (9) should be
used in the calculation of the RML estimator (18) is always identically zero for all p(rz) when no phase errors are pres-
normalized so that s(r,z) "s(rz) = I (for all r,z), and since ent, so that in this case ML and RML are equivalent to each
the summation for the RML estimator (10) is equivalent to other. Explicit calculation of the RML (17) for the same
the summation for the ML estimator (9) (when the terms input conditions confirms that this is indeed the case. The
for n =. I .. are zero), we hase the surprising result RML produces an ambiguity surface identical to t'.it of Fig.
that the Mt. estimator (9) and the RML estimator (10) are 3.
equi'ialent except for the way the steering i ectors p(r,z) are The reason for the high peak resolution on the surface in

normaliied in the two cases. However, this is not true in the Fig. 3 may be seen by inspection of Eqs. (9) and (21 ). The
:,resence of phase errors, or any other factors, which cause cigenvalucs/.,, appearing in the summation on the rhs of (9)
the terms for n 1 I ...... N in the MIL summation (9) to take the values 2. = - ( +--: + ;..... (, -- (F -- ,: and
h-onie nonzero, as wve Thall see later. .. . = p'. Since a'. o- >p- we may further approxi-

If %c in,pcL Fig. 2 \.c see that the tmbiguity surface mate theseasj = (Z- + o, :/ , •. =p
cOnt a, an unanlbiguous prinmary peak at tihe input source Passing to Eq. (21) we recall that in ML information about
Itit i-ri ( l-ni depth and 4000-rn range): but it is most nota- the signal is carried by the nulls of the functions z,p(r,z)
Me ft lr iso other tature, Fle first is the lack of contrast for n = 2..N. In our case here these functions are identical-
hetswen p-ak, and '.alleys on the surface itself: and the sec- ly zero for it ,. + I for all p(r,z) so we are really interested
Mnd is the hiwh o\erall le\el of the surface, which is corn- only in the nulls of the terms for it = 2...M. In (21) we see
pressed into tle top I0(-Y of the available range of estimator that a' > (T' and therefore ( = (, 2.1). mak-

altUe,. The teason for this may be seen by inspection from ing the first term in the denominator small and the nulls of
Eqs. (9) and 21 ). The eigenvalues /, appearing in the sum- the remaining terms more significant. This lad, to t'w pro-
matio on the rh,, of Eq. (9) take the values nounced signal peak observed on the surface.
x. ( j. ...... / o('-4- P: . . Let us now consider the effect of introducing phase er-
and since (T>>(y p all of these eigenvalues are dominated rors onto the hydrophones. Figure 4 shows the ambiguity
by (T! and those for n I ...... if have similar magnitude. surface prod4,o d using ML when the RPE is 30 deg. We see
Nov%. a,, dc,,cribed earlier. information about the signal in immediately that a lot of degradation has taken place. AI-
MI. processing is carried by the (near) nulls of the functions though the signal peak may still be observed at this point, it is
z' p( r.z) " (for n - 2 ...... I) in the denominator of Eq. (9) now dominated by the sidelobe structure and may no longer
(the terms from it . 1 Ito N are identically equal to zero be unambiguously resolved. The reason for this loss of per-
forall p(rz). so theN play no role in the ML estimator). Now formance is primarily due to the inclusion of the terms for
each of the nonzero terms is multiplied by a factor z/olc.
When (r' is large (as here) this factor tends to make them
small over the whole range of p( r.z) rather than at just the
source position and. because of the similarity of the eigenval-
ues for it = I ...... I1 of comparable magnitude to the source
term ) , i zfp(r,z) ' This decreases the reciprocal effect of
the nulls at the source location arid lead, ,a the shallow relief I

of the details on the surface and its high overall background t 0.75.
level. Although the surface in Fig. 2 is very flat and has a 0
high background due to the large amount of modal noise, it J 0.50.
does unambiguously indicate the presence and position of cc 0.2. oU 0.25
the source and is much more useful than Fig. I. The reason 0
for this is that it has been produced using a normalization 0. - 75.
procedure for the steering vectors which is optimized for the 1000 20003 00
presence of modal noise. Since we will he considering cases, RANGE () 6 000
in our later simulations, where modal noise predominates
over white noise, we will use the s(r,z) "s(rz) normalization
throughout. FtI. 3. Ambiguity surface produced using ML estimator for Pekeris wave-

guide environment. The level of white noise is - 30 dB (i.e.. a signal to
We will now proceed to consider the effects of phase while noise ratio of 30 dH). The level of modal noise is - tO dB (i.e.. a

error. We will be concerned here with a case where white ,ignal to modal noise ratio of 0 tM). The RPE is 0 deg.
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the phase error increases. It reaches 50% with an RPE of 35
deg and 95% with an RPE of only 80 deg. It asymptotically
approaches 100% thereafter. With this in mind it is easy to
understand how the sidelobe structure of the surface is en-

075 ) ' hanced by the presence of the extra, nonzero terms in the
ML summation (9), and the stability of the estimator corre-

050 0 spondingly decreased.
CD 25 The RML estimator overcomes this problem of instabil-

025 ; P~ 50 ity due to phase error by omitting the terms for n>M -t 1

0 from the summation. Some errors will still be present due to
1000 2000 3000 40'00 the changes in the projections of the steering vectors p(r,z)

5000 along the eigenvectors z,, for n <M, as these are also rotatedRANGE7000 in the vector space due to the phase errors. However, this

I l( 4 Ambiiutirldtcc produced U NI\11 esinmiator for identical ell- effect is much smaller and allows the RML estimator to re-
tlonniCntdl and noise condition, as ii Fig. I. Tle RPE is 30 deg. main stable to considerably higher degrees of phase error.

Figure 6 shows the ambiguity surface obtained using the

RML estimator with an RPE of 30 deg (cf. Fig. 4). Unlike
o -1 - 1 in the summation for the M L estimator (9). With the ML case, the signal peak is still unambiguously localized
no phase errors these terms are identically zero, as we have and sharply resolved against the sidelobe background. For
seen. liowexer. the introduction of phase errors into the this particular set ofenvironmental and noise conditions, the
CSM R. wil leaxing the eigenvalues 2, nchanged, gives RML estimator remains stable up to an RPE of85 deg, when
rise to arbitrar\ rotation of the eigenvectors z,, in the vector the sidelobes finally overcome the signal peak and the esti-
space of R. The projections of the steering vectors p(rz) mator fails. This represents a remarkable improvement over
along the eigensectors z,, (u 11 - I ) then become nonzero. ML. Reference back to Fig. 5 shows that for an RPE of 85
Although these projections may be relatively small their ef- deg the n>M + 1 terms contribute more than 95% to the
fect upon the summation in (9) is amplified by the 2 ,, ML summation (9). This is all simply avoided by using the
factor by which they are multiplied. We remember from RML.
(21 ) that for a _.M - 1. 1/p'. Now p is the level of Figure 7 displays the variation in PBRI and PBR2 as a

white noise, which in our case is low ( - 30 dB). Therefore function of RPE for the ML and RML estimators. The en-
I /p is a large coefficient that can greatly exaggerate thL vironmental and noise conditions are unchanged from the
contribution of the n -.M + I terms to the summation, even previous examples. If we individually compare the PBRI
when the RPE is comparatively small. Using the same envir- and PBR2 curves for the two cases we see that, by both mea-
onniental and noise conditions, we plot in Fig. 5 the percen- sures, the RML estimator consistently outperforms the ML
tage contribution to the summation in the denominator of estimator throughout the range of RPE values investigated,
the MI. expression (9), when r and z are correct, due to the except by a small amount within an interval between 0 and
i 1 I terms. We see that the contribution rises rapidly as 15 deg. As the RPE is increased the ML estimator deterio-

rates very rapidly. The ML curves terminate at an RPE of 30
deg, beyond which the signal peak cannot be resolved. The
RML curves also indicate a deterioration in performance,
but at a much more moderate rate. As discussed abov,,, the
RML continues to provide accurate and robust localization
estimates up to an RPE of 85 deg.

80j

z 60-

LX J0.7ooo

S40-
C 0.25

20 0

0 20 40 60 80 100 120
PHASE ERROR (deg) 7000

FIG 5 Perceritage contribution of n M + I terms to summation in the
denominator of expression ( ql for the MIL estimator. The environmental FIG, 6. Ambiguity surface produced using RML estimator for identical
and noise conditions are those of the previous examples. environmental and noise conditions as in Figs. I and 2. The RPE is 30 deg.
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30 zation of the steering vectors) produces a far superior and
more useful ambiguity surface than using an MI. estimator
which is optimized for the presence of white noise. In the

absence of phase errors the ML and RML estimators are
20 equivalent apart from the steering vector normalization

a 20 -schemes they employ.
In the case of an environment with a significant amount

of modal noise (the signal to modal noise ratio is 10 dB) and0
little white noise (the signal to white noise ratio is 30 dB) theI--, 1j0-__ two methods are compared as they respond to increasing
degrees of phase error introduced on the hydrophones. The
results obtained clearly demonstrate the superiority of the
RML estimator over the ML estimator. The ML estimator
deteriorates rapidly with phase error, due to the contribu-

010 tions of large (previously zero) terms in the summation
0 20 40 60 80 l00 expression for ML. The ML estimator fails completely when

PHASE ERROR (deg) the random phase error is greater than 30 deg. The RML

FIG, Variation of PR I arid 1'13R fICItiI ofR PE for both NIL and estimator avoids this problem by omitting the destabilizing
\ i- estiniator,,. The en' ironmental and noise conditions are those of Iti terms from the summation. The terms remaining in the

preio,,, c\aniplc,. rhe four curse, are: (a) RMLtIPBR2 )-shaded dia- RML summation are also affected by the introduction of
mottd,: Ib) RMLtPBRI)--un,haded dimnond,: (c) .MIi(PBR2)- phase errors, but to a much lesser extent. The RML estima-
,haldcd squares: tl) MPBRI )-insladed squares. tor continues to perform accurately and reliably up to a ran-

dom phase error of 85 deg.
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These may be caused by a number of physical and environ-
mental factors. We simulate them here by introducing ran-
dom phase errors at the hydrophones. Applying the eigen- APPENDIX A: FORMULATION OF p=U : LOCAL
vector/Ligenvalue decomposition of the cross-spectral NORMAL-MODE MODEL

matrix R. the ML estimator is expanded as the reciprocal of In Sec. I we discussed the normal-mode model for prop-
a sum of terms, one corresponding to each eigenvector. In agation and showed that the single snapshot (narrow-band)
theory, most of these terms should be zero when the source data vector corresponding to a single source had the form
has been correctly located, leading to a peak in the estimator. p = U,, where the N X M matrix U is independent of the
Due to perturbations in R caused by the phase errors, how- source and depends only on the array and the acoustic envi-
ever. terms that should be zero across the entire ambiguity ronment. All source dependencies are in the vectors, whose
surface arc not, leading to a drop in peak level. By removing entries are given in Eq. (3). However, the typical normal-
these crr, noous terms the estimator may be stabilized. We mode approach has the deficiency of being valid only for
term the new% estimator that results from this procedure the depth-dependent media, and does not permit inclusion of
"reduced maximum likelihood" or RML estimator. Dimen- range dependencies. In this Appendix we shall show that the
sionality reduction procedures are used to calculate the p = U, formulation and preceding results are valid for com-
RML, avoiding inversion of the full-sized matrix or the cal- plicated environments where the ocean channel has sound
culation of eigenvalues. speed and density exhibiting both range and depth depend-

Using a Pekeris %aveguide model, simulations ofacous- encies, as well as a rough surface. Such assumptions in mod-
tic propagation from a single source to a 21 -hydrophone re- cling an ocean channel can be included in an extension ofthe
ceiving array were used to examine the RML and ML esti- normal-mode method to obtain solutions in terms of"local"
mators. In our particular model the waveguide supports normal modes. We shall use well-known methods" t in de-
eight modes and application of the RML estimator reduces riving solutions. First we incorporate density changes into
the full problem of dimension 21 to one of dimension 8. Con- effective sound speed profiles, and then we obtain solutions
sidering an environment with a large amount of modal noise in terms of orthogonal eigenfunctions and coupled modal
(the signal to modal noise ratio is - 20 dB) and little white amplitudes.
noise (the signal to white noise ratio is 30 dB), it is found Consider a sound source positioned below the origin ofa
that using an ML estimator which is optimized for the pres- cylindrical coordinate system on the z axis at z = z,. Assu -

ence of modal noise (by performing an appropriate normali- ing a cylindrically symmetric ocean channel, the surface is at
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Z = d(r). and the bottom of the ocean sediments is at z = D. and where s is a source dependent vector with the Mcompo-
The ocean is assumed to have range- and depth-dependent nents
sound speed c(r,z) and density p,(r.z). Let the acoustic (A14)
pressure be p( r.z.t). Assuming harmonic time dependence t v_ d n 1.2.e Iwith frequency oradians per second, we have Note that the x,,, depend on source range and depth. In the

case when there is modal and white noise, in addition to a
pkr~z.i) = P(r.z)e '.... (Al) particular signal of interest, one writes

We suppress any time dependence in the surface Ichoosing x = U, + Uy + 91 . (A15)
to view d(r) as a member of an ensemble of random func-
tions remaining fixed in source-receiver travel timesI and as in Eq. (1). Even though it appears that Eq. (A13) de-

hence also in P. which will satisfy the differential equation pends on source range (since that is where the origin is posi-
tioned) it is actually not dependent on the distance between

1 ,V([) !VP) + k -'P= - b(r).a(z - z, ) 1/2,-r. (A2) the source and receiver but on the actual location of the

along with the horizontal boundary conditions, receiver: i.e., for different source locations the U are still

P(r.d(r)) = 0 (A3) the same.

and

-(r,D) = 0. (A4) APPENDIX B: FORMULATION OF p=U: PARABOLIC
dz APPROXIMATION MODEL

Equation (A3) corresponds to a pressure release surface, For actual applications, the system of equations in the
while Eq. (A4) is descriptive of a perfectly hard subbottom. preceding appendix may be quite difficult to solve. The Para-
In Eq. (A2), k = &o/c is the local wavenumber. By defin- bolic Approximation method simplifies the modal ampli-
ing' 1'' tude equations. If, instead of using Eq. (A5), one uses the

P(r.z) = -p,,(rz) P'(r,z) , (A5) assumption" that

and using Eq. (A2), P' satisfies P(r,z) = xIpv.(r,z) u(r,z)H:)' )(k,) r) , (B1)

where in the farfield
V 2P' + P [ -6(r)'(z -z,)]/2rrrp,. (A6)

where H('(kor) -.\2/irkAr e -, k,r> 1, (B2)

k 2 + P', 2
'V.(p,, I 

2 Vp) ( then, away from the source, u(r,z) satisfies the parabolic
approximation

is an effective local wavenumber Hence, by defining an "ef- , 2u u 2 ,
fective" sound speed, c,. = (o/k,., one may implement den- - + 2iko -+ [ k (r,z) - k,3] u =0 (B3)
sity variations in numerical routines via effective sound dz2  r

speed profiles and modified source strength. where k, = a)/c(, is a reference wavenumber and c, is a refer-

To derive coupled modes we let ".21 ence sound speed. Now if one writes

uIz U ( F,, (r) I,, (z; r) , (134)

P'(r.z) = > 'D,,(r) T,,(z;r) , (A8) = (
" with '1,, determined as in Eqs. (A9)-(A 11), then F,, will be

where kP,, (z;r) are solutions to the local normal-mode prob- solutions of

lems dF,, 2 [,,(r)+klr,,=- S A,....(r)r,,.

dr 2k,.
(? + [ k (r,z) - K-',(r) I q ,, =0, (A9)(I5

with whereA,,,,, are integral functions of q,, and kl,, given in Ref.
q),d~r:r)= 0(AI0) 11.

and If a is a vector of length M whose components are modal
amplitudes F,,, and if we approximate the solution by as-

S.0( suming M modes propagate, then a satisfies the first-order
z(P,, J11,) =0. (All) problem

See Ref. I I for the equations that uniquely determine the P,,. a' = fl(r)a, (86)

Now, if we use the typical definition for the vector where il is an M X M matrix with entries

p= [P(rz,),P(r.z ),P(rz,)....P(r,z,)I', (A12) ( 2, +

and assume only a finite number (M) of modes propagate, Q _, 2k( (B7)
then p = U,, where U is an N X M matrix with entries -A ....(r) m#n.

U,,,,, r p,,(rz,, I)_,,, (z,,:r) = 1,2,...,N, (A13) Hence, ifexp[ft, I(r) d-] is the matrix exponential corre-

m= 1,2.... M, sponding to the integral of 11 then one can write
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